Copied to
clipboard

G = C20.72C24order 320 = 26·5

19th non-split extension by C20 of C24 acting via C24/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.72C24, C40.49C23, M4(2):28D10, C8oD4:8D5, (C2xC8):23D10, (D4xD5).1C4, (Q8xD5).1C4, D4.13(C4xD5), Q8.14(C4xD5), (C2xC40):26C22, C4oD4.43D10, D20.35(C2xC4), D4:2D5.1C4, (C8xD5):12C22, C5:5(Q8oM4(2)), D4.Dic5:8C2, Q8:2D5.1C4, C8.56(C22xD5), C4.71(C23xD5), C8:D5:22C22, (D5xM4(2)):11C2, C20.74(C22xC4), C10.56(C23xC4), C5:2C8.33C23, (C4xD5).73C23, D20.2C4:13C2, D20.3C4:17C2, (C2xC20).514C23, Dic10.37(C2xC4), C4oD20.52C22, D10.25(C22xC4), C4.Dic5:27C22, (C5xM4(2)):28C22, Dic5.24(C22xC4), C4.39(C2xC4xD5), (C5xC8oD4):9C2, C22.5(C2xC4xD5), (D5xC4oD4).3C2, C5:D4.6(C2xC4), (C2xC8:D5):28C2, C2.36(D5xC22xC4), (C4xD5).11(C2xC4), (C5xD4).31(C2xC4), (C5xQ8).33(C2xC4), (C2xC5:2C8):13C22, (C2xC4xD5).163C22, (C2xC10).12(C22xC4), (C2xDic5).40(C2xC4), (C5xC4oD4).44C22, (C22xD5).33(C2xC4), (C2xC4).607(C22xD5), SmallGroup(320,1422)

Series: Derived Chief Lower central Upper central

C1C10 — C20.72C24
C1C5C10C20C4xD5C2xC4xD5D5xC4oD4 — C20.72C24
C5C10 — C20.72C24
C1C4C8oD4

Generators and relations for C20.72C24
 G = < a,b,c,d | a40=b2=c2=d2=1, bab=a29, cac=a21, ad=da, bc=cb, bd=db, dcd=a20c >

Subgroups: 734 in 258 conjugacy classes, 147 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2xC8, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic5, Dic5, C20, C20, D10, D10, D10, C2xC10, C2xM4(2), C8oD4, C8oD4, C2xC4oD4, C5:2C8, C5:2C8, C40, C40, Dic10, C4xD5, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C5xQ8, C22xD5, Q8oM4(2), C8xD5, C8:D5, C8:D5, C2xC5:2C8, C4.Dic5, C2xC40, C5xM4(2), C2xC4xD5, C4oD20, D4xD5, D4:2D5, Q8xD5, Q8:2D5, C5xC4oD4, C2xC8:D5, D20.3C4, D5xM4(2), D20.2C4, D4.Dic5, C5xC8oD4, D5xC4oD4, C20.72C24
Quotients: C1, C2, C4, C22, C2xC4, C23, D5, C22xC4, C24, D10, C23xC4, C4xD5, C22xD5, Q8oM4(2), C2xC4xD5, C23xD5, D5xC22xC4, C20.72C24

Smallest permutation representation of C20.72C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 30)(3 19)(4 8)(5 37)(6 26)(7 15)(9 33)(10 22)(12 40)(13 29)(14 18)(16 36)(17 25)(20 32)(23 39)(24 28)(27 35)(34 38)(41 73)(42 62)(43 51)(44 80)(45 69)(46 58)(48 76)(49 65)(50 54)(52 72)(53 61)(55 79)(56 68)(59 75)(60 64)(63 71)(66 78)(70 74)
(1 67)(2 48)(3 69)(4 50)(5 71)(6 52)(7 73)(8 54)(9 75)(10 56)(11 77)(12 58)(13 79)(14 60)(15 41)(16 62)(17 43)(18 64)(19 45)(20 66)(21 47)(22 68)(23 49)(24 70)(25 51)(26 72)(27 53)(28 74)(29 55)(30 76)(31 57)(32 78)(33 59)(34 80)(35 61)(36 42)(37 63)(38 44)(39 65)(40 46)
(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,73)(42,62)(43,51)(44,80)(45,69)(46,58)(48,76)(49,65)(50,54)(52,72)(53,61)(55,79)(56,68)(59,75)(60,64)(63,71)(66,78)(70,74), (1,67)(2,48)(3,69)(4,50)(5,71)(6,52)(7,73)(8,54)(9,75)(10,56)(11,77)(12,58)(13,79)(14,60)(15,41)(16,62)(17,43)(18,64)(19,45)(20,66)(21,47)(22,68)(23,49)(24,70)(25,51)(26,72)(27,53)(28,74)(29,55)(30,76)(31,57)(32,78)(33,59)(34,80)(35,61)(36,42)(37,63)(38,44)(39,65)(40,46), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,73)(42,62)(43,51)(44,80)(45,69)(46,58)(48,76)(49,65)(50,54)(52,72)(53,61)(55,79)(56,68)(59,75)(60,64)(63,71)(66,78)(70,74), (1,67)(2,48)(3,69)(4,50)(5,71)(6,52)(7,73)(8,54)(9,75)(10,56)(11,77)(12,58)(13,79)(14,60)(15,41)(16,62)(17,43)(18,64)(19,45)(20,66)(21,47)(22,68)(23,49)(24,70)(25,51)(26,72)(27,53)(28,74)(29,55)(30,76)(31,57)(32,78)(33,59)(34,80)(35,61)(36,42)(37,63)(38,44)(39,65)(40,46), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,30),(3,19),(4,8),(5,37),(6,26),(7,15),(9,33),(10,22),(12,40),(13,29),(14,18),(16,36),(17,25),(20,32),(23,39),(24,28),(27,35),(34,38),(41,73),(42,62),(43,51),(44,80),(45,69),(46,58),(48,76),(49,65),(50,54),(52,72),(53,61),(55,79),(56,68),(59,75),(60,64),(63,71),(66,78),(70,74)], [(1,67),(2,48),(3,69),(4,50),(5,71),(6,52),(7,73),(8,54),(9,75),(10,56),(11,77),(12,58),(13,79),(14,60),(15,41),(16,62),(17,43),(18,64),(19,45),(20,66),(21,47),(22,68),(23,49),(24,70),(25,51),(26,72),(27,53),(28,74),(29,55),(30,76),(31,57),(32,78),(33,59),(34,80),(35,61),(36,42),(37,63),(38,44),(39,65),(40,46)], [(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A···8H8I···8P10A10B10C···10H20A20B20C20D20E···20J40A···40H40I···40T
order122222222444444444558···88···8101010···102020202020···2040···4040···40
size11222101010101122210101010222···210···10224···422224···42···24···4

74 irreducible representations

dim11111111111122222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D5D10D10D10C4xD5C4xD5Q8oM4(2)C20.72C24
kernelC20.72C24C2xC8:D5D20.3C4D5xM4(2)D20.2C4D4.Dic5C5xC8oD4D5xC4oD4D4xD5D4:2D5Q8xD5Q8:2D5C8oD4C2xC8M4(2)C4oD4D4Q8C5C1
# reps133331116622266212428

Matrix representation of C20.72C24 in GL6(F41)

6350000
610000
0003900
0025000
00400402
002040361
,
3560000
160000
001000
0004000
000010
0010140
,
4000000
0400000
000010
00200201
001000
00211210
,
4000000
0400000
001000
000100
0000400
0010040

G:=sub<GL(6,GF(41))| [6,6,0,0,0,0,35,1,0,0,0,0,0,0,0,25,40,20,0,0,39,0,0,40,0,0,0,0,40,36,0,0,0,0,2,1],[35,1,0,0,0,0,6,6,0,0,0,0,0,0,1,0,0,1,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,20,1,21,0,0,0,0,0,1,0,0,1,20,0,21,0,0,0,1,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

C20.72C24 in GAP, Magma, Sage, TeX

C_{20}._{72}C_2^4
% in TeX

G:=Group("C20.72C2^4");
// GroupNames label

G:=SmallGroup(320,1422);
// by ID

G=gap.SmallGroup(320,1422);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,1123,80,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=c^2=d^2=1,b*a*b=a^29,c*a*c=a^21,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^20*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<